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ABSTRACT 

Every division algebra of degree p~ has a prime-to-p extension which is a 

crossed product ,  iff t _< 2. 

I n t r o d u c t i o n  

Throughout  this paper  we assume D is a division algebra which is finite dimen- 

sional over its center F (a field). Then it is well-known [D : F] = n 2 for some 

integer n called the d e g r e e  of D; furthermore D is isomorphic to a tensor prod- 

uct Dx ® " "  ® Du over F where each Di has degree pl (1) for a suitable prime 

Pl and suitable t(i) E l~l (so that  n p t l (D t(u)~ . . . .  pu 1. In this way the structure 

theory of finite dimensional division algebras often is reduced to the case that  

the degree n is some prime power pt, and we shall make this assumption (n = pt) 

throughout; in particular p is a fixed prime. 

Many basic theorems about  division algebras have been proved by passing to 

D ® F L  where [L : F] is finite but not divisible by p; we shall call D ® F L  a p r i m e -  

t o -p  extension of D. For example, Albert showed that  any division algebra D 
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of degree p has a prime-to-p extension which is cyclic; taking the corestriction 

Rosset proved D is similar (in the Brauer group) to a tensor product of cyclics 

each of degree p. Our main theorems using this technique are: 

1. Every division algebra D of degree pU, u > 2, has a prime-to-p extension 

which contains a tensor product of two cyclic extensions of its center (each of 

dimension p). In particular if u = 2 then D has a prime-to-p extension which is 

a crossed product with respect to the group Zp × Zp. 

2. There are examples of division algebras of degree pU, u >_ 3, such that  no  

prime-to-p extension is a crossed product. 

3. (for p odd). There is a division algebra of degree p2 and exponent p, every 

prime to p extension of which is tensor indecomposable (i.e. cannot be written 

as a tensor product of central subalgebras). (The referee has pointed out that for 

p = 2, the same techniques yield the analogous results in degree 8 and exponent 

2.) 
Each section of this paper corresponds to the respective theorem stated above. 

1. T h e  " c a n o n i c a l "  p r i m e - t o - p  ex t ens ion ,  a n d  crossed products 

In this section we set up the standard prime-to-p extension of D (which goes 

back to Albert), and use it to prove theorem 1. 

Suppose D is a division algebra of degree n over its center F ,  where n is a 

power of a prime number p. Let K D F be a subfield of D which is separable 

over F.  (There exist separable subfields of dimension n, by Koethe's theorem.) 

Let E be the normal closure of K,  and let G = Gal(E/K) .  Also let [K : F] = pU. 

Then IGI = p~t for suitable v > u and suitable t prime to p. Let H be a Sylow 

p-subgroup of G, and let L = E H, the fixed subfield of E under H. Then 

[L: F] = [E :  F]/[E:  L] = t is prime to p. 

Note L C E and K C E so K L  C_ E. But t = [L : F] divides [KL : F] and 

pU = [K :  F] divides [h'L: F], implying [KL: F] = put. 

By Galois theory E / L  is Galois with Galois group H. Let H1 = Gal(E/KL) .  

Since H is a p-group we can form a chain of subgroups 

H~ c H2 C . . .  c H~ = H 

with each H / n o r m a l  of index p in Hi+I. Thus there is a chain: 

K L = Eo D E1 D E~. . .  D E~ = L 
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with each Ei/Ei+ 1 Galois of degree p. 

Looking at E~-I we have: 

PROPOSITmN 1.1 (Essentially Albert [A, theorem 4.31]): /£degD = n = p" and 

K D F is a subtield of D separable over F then there is some extension L D F 

with [L : F] prime to p, such that K L  contains an element a of degree p over L 

with L(a) /L Galois. 

TrlEOREM 1.2: If p2ldeg(D) then some prime-to-p extension D ® L contains a 

Galois ~qeld extension [4 of L of dimension p2, having GMois group Z v × Z v. 

Proof'. By Proposition 1.1 there is a prime-to-p extension L0 of F such that 

D1 = D ® L0 contains a Galois extension Lo(a) of L0 of degree p; let a be a 

nontrivial automorphism of Lo(a)/Lo. By the Skolem-Noether theorem there is 

y in D1 for which yay -1 = a(a). Clearly yV commutes with a, but y does not. 

Furthermore L0, y, and a generate a division algebra A of degree p with center 

Lo(uV). 
Let D' = CDI(A) be the centralizer of A in D1. Then D' N Lo(a) = Lo. (For 

otherwise D'N Lo(a) = Lo(a) since [L0(a) : L] = p is prime, implying a E D' and 

thus commutes with y, contradiction.) 

CASE 1: D' contains a proper separable extension K of L0. Applying propo- 

sition 1.1 there is a prime-to-p extension L1 of L0 such that L1K contains an 

element b with LI(b)/L1 Galois of dimension p. Furthermore L1K N L~(a) = Lx 

seen by matching bases over L0, so L~(b) n L~(a) = L1; we conclude by taking 

L = L1 and k = Ll(a, b), which is Galois over L1 with Galois group Zp x Zp. 

CASE 2: D' does not contain a proper separable field extension K of L0, i.e., 

every subfield of D' is purely inseparable over L0. Note that deg D' = 1, since 

otherwise D' has maximal subfields separable over its center, which thus are not 

purely inseparable over L0. Hence A = CD,(no(yV)), implying p[Lo(yP): L0] = 

deg D, and thus Lo(y) is a maximal subfield of D1, purely inseparable over L0. 

By [A, theorem 7.25], D~ is cyclic. Hence by [S, theorem 1'], D~ has a Galois field 

extension/~ of L of dimension p2, having Galois group Zp × Zp. (In fact by the 

theorem quoted, any group of order < deg(D1 ) appears as the Galois group of a 

suitable maximal subfield.) (We would like to thank A1 Sethuraman for pointing 

out a gap in the original version; he has art alternate proof for this case.) | 
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COROLLARY 1.3: I f  deg(D) = p2 then some prime-to-p extension of D is a 

crossed product. 

2. D e g r e e s  h i g h e r  t h a n  p2 

In the previous section, we showed that for any division algebra D / F  of degree 

p2 there is a prime-to-p field extension L _D F such that  D ®F L is a crossed 

product.  Of course, if D has degree p the proof is quite easy. The purpose of 

this section is to show that the above results are best possible. That  is, we will 

show: 

THEOREM 2.1: Suppose s > 2, r > 3, F is a field of characteristic not p, and 

D = UD(F,p r, s) is the generic division a/gebra of degree pr in s variables over 

F. Let Z = Z(D),  the center o lD and L D_ Z, an arbitrary prime-to-p extension. 

Then UD(F,p~,s) ®z L is not a crossed product. 

Although the proof of 2.1 will take a few pages, conceptually what we will do is 

very clear. The main idea is that even after prime-to-p extensions the argument 

in Amitsur's noncrossed product proof still works in the case degree p~, r > 3. 

For example, assume UD(F,p~,s) ®z L is a G-crossed product (i.e. G appears 

as the Galois group) where L = Z(a) is separable over Z, and let f E Z[x] be 

the minimal polynomial of a over Z. One may assume f is monic. Specializing 

UD(F, pr, s) to a division ring D would specialize f to a polynomial f which may 

be reducible, so writing Z(D)[x]/(f)  as a direct sum of fields L1 ~ . . .  ~ Lt we 

see that D ® L 1 , . . . ,  D ® Lt each are G-crossed products. But [L1 • "'" ~ Lt : 

F] = ~_,[Li: F] = deg f ,  so some [Li: F l is prime to p, and now the customary 

comparison technique can be made to work. 

In order to provide a comprehensive proof including the inseparable case we 

turn to the techniques of Azumaya algebras. Let us begin by defining some 

terminology. 

If ~ : R ~ S is a ring homomorphism of commutative rings and M is an 

R-module, M ®~ S is defined as M ®R S where S is viewed as an R module 

via ~. For commutative rings R C_ T, recall (e.g. [DI, p.80]) the definition of a 

G-Galois extension T/R.  Given such a T/R,  let c : G × G ~ T* be a 2 cocycle. 

We can form the G-crossed product A(T /R ,  G, c) = ~ Tu~ where u~t = ,r(t)u~, 

for t E T and u~u~ = C(~r, r)U~,~. An algebra AI R  is called a G-crossed  p r o d u c t  

if A ~ A(T /R ,  G, c) for some T / R  and c. Note that if R is a field, T need not be 
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a field but is a direct sum L @ . . .  @ L where L / R  is H-Galois for some H C G. 

The advantage of this definition is that  the class of G-crossed products is closed 

under base extension. For any commutative domain R, we denote its field of 

fractions by Q(R). Finally, if A is a set, IAI denotes the order of A. 

Our approach, not surprisingly, is to modify Amitsur's comparison technique. 

First we give the consequences of assuming UD(F, pr, s)®z L is a crossed product. 

THEOREM 2.2: Let D = UD(F, pr,s) where s >__ 2, and Z = Z(D). Assume 

D has a prime-to-p extension D ®z L which is a G-crossed product. If  A / K  is 

any central simple algebra of degree n, where K D_ F, then A has a prime-to-p 

extension A ®K K'  which is a G-crossed product. 

Proo£" Let L" be the maximal separable subfield of L over Z. View D naturally 

as the ring of fractions of the ring of generic matrices F{Y1, . . . ,  Y~} at its center 

C = Z(F{Y1 , . . . ,  Y,}). Before continuing the proof we need 

LEMMA 2.3: There is 0 # t E C and, for C' = C(1/t), there is an Azumaya 

algebra B/C ' ,  a commutative C'-algebra S", and a commutative S"-algebra S 

such that: 

(1) S" is a finitely generated free C'-module and separable over C'. 

(2) S is a ~qnitely generated free S"-modu/e, and S q C__ S" for some power q 

of char(F). Of course, S = S" if char(F) = O. 

(3) Q(S") = L". 

(4) Q(S) = L. 

(5) B ® e , Z = D .  

(6) B ®c, S is a G-crossed product. 

Proof: Note that  properties (1) through (6) axe preserved by extension of C'  in 

Z. Also note that it suffices to find C' C_ Z finitely generated as an algebra over 

C, satisfying all the above, since then C' C C(1/t) for some 0 ¢ t E C. Thus, 

at any stage in the argument we are free to add finitely many elements to C'  as 

needed. 

To find B/C '  Azumaya with B ®c, Z = D is standard (e.g. [OS, p.135]). 

Suppose L" = Z(a)  and f ( x )  E Z[x] is the minimal monic polynomial of a over 

Z. By adding finitely many elements to C', we may assume f ( x )  E C'[x]. Set 

S" = C'[x]/(f(x)). If c E L"  ®z L" is the separating idempotent (e.g. [DI, 

p.40]), adding finitely many more elements to C I will insure e E S" ®c' S", 
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and so S"/C'  is separable. Next, suppose L0 = L" C_C_ L1 C_ . . .  C_ L ,  = L is 

such that  Li/Li-1 has degree qi and Li = Li-l(cxi) where (ai)q' = ai E Li-1.  

Adding finitely many elements to C ~ will insure ai E S" and inductively we set 

S i  = S i - 1  [ x ] / ( x  gl --  el) (where So = S"). Proceeding by induction we can set 

S = Sn. 

We have assumed D ®z L ~- &(M/L, G, c) where M/L  is G-Galois. In the 

same spirit as the above paragraph,  we can add finitely many  elements to C ~ 

so that  there is a G-Galois T / S  with T ®s  L TM M as G-Galois extensions and 

such that  all values of c : G x G ~ M are units in T (we can quote [S1, p.528] 

here). Forming the crossed product A(T/S,  G, c), we obtain an isomorphism ~ : 

( B ®c, S) ®s L ~ A( T / S, G, c) ®s L. Adjoining the final finite batch of elements 

to C '  will insure that  7~ restricts to an isomorphism B ®c, S ~- A(T/S,  G, c). 

This proves the lemma. | 

We can now complete the proof of 2.2. Suppose A / K  is as given, and C '  = 

C(1/t), S", S, B are as in the lemma. There is a ~ : C -* g such that  ~0(t) # 0, 

and extending ~0 to C s, we have B ®~ K ~ A. Let K "  = S"  ®~ K. Then K "  

is a separable K-algebra  so K "  = K~ I q~.. .  @ K~ I where each K~ I is a separable 

field extension of K. Let V = S ®~ K. Then V is a commutat ive K"-a lgebra  and 

V q C K". If J is the Jacobson radical of V, then V/J  ~- K~ (3"" @ K~ where 

each K~ is a purely inseparable field extension of K~ I. 

Since B ®e, S is a G-crossed product, the same holds for A ® g  V. It follows 

that  A®K V/J  is a G-crossed product and so all A®KK~ are G-crossed products. 

But [L : Z] is prime to p, so the same is true of [L" : Z] and thus of [ g '  : K]. 

It follows that  some K~ I has degree prime to p over K. If L = L" then K~ = K~ ~ 

and we are done. If not, char(F) # p implying that  [K~ : g~'] is prime to p and 

so [K~ : K] is prime to p, proving 2.2. II 

With 2.2 as our tool, we proceed to prove 2.1 by showing no group G can arise 

for all A / K  as in 2.2. To this end, we require examples of division algebras in 

which we understand the groups appearing as Galois groups of maximal  subfields 

and their behavior under prime to p extensions. It is very convenient to use totally 

and tamely ramified division algebras for our purpose. We will recall some basic 

definitions in this area, but we refer the reader to [TW], and [TA] for more details. 

Let D be a division algebra with (Krull) valuation v: D --* r where r is an 

ordered abelian group. Associated to v is its valuation ring R C D with unique 
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maximal ideal M C R and residue division algebra b = R/M. If F = Z(D) then 
v induces a valuation (also called v) on F and we let c ( D / F )  denote the finite 

index [v(D*) : v(F*)]. We say D is t o t a l ly  a n d  t a m e l y  r a m i f i e d  with respect 

to v if e ( D / F )  = [D : F] and [D: F] is prime to the residue characteristic. Note 

that in this case b = ~'. 

Assume that D is a totally and tamely ramified division algebra with center 

F,  with respect to a valuation v. We will quote some known results about D. Let 

A = v(D*) /v (F*) ,  an abelian group of order [D: F]. D defines a n o n d e g e n e r a t e  

symplee t i e  pa i r ing  7 : A x A --+/z [TW, p. 232] where/ t  C ~' is the group of 

roots of 1, by which we mean: 

(1) 7 is bilinear 

(2) a) = 1 for all a e A 

(3) 7 induces an isomorphism A -~ Homz(A, #). 

Recall that if a, b • v(D) and de e • D satisfy v(d) = a, v(e) = b, then: 

(2.4) 7(a, b) = (ded -~ e -1 ) + M E b = .g'. 

A subgroup B C A is called L a g r a n g i a n  if 7(B, B) = 1 and IBI 2 - IAI. The key 

result in this whole business is: 

THEOREM 2.5 (TW, theorem 3.8): A group G is isomorphic to the Gaiois group 

of a maxima/subfield o l D  over a henselian t~eld F f f  and only i f  G is isomorphic 

to a Lagrangian subgroup of  A. 

Paired with 2.5 is the existence theorem. 

THEOREM 2.6 (TA, p. 133): Suppose A t is a finite abelian group with a nonde- 

generate symplectic pairing 7' : A' x A' --+ Q/Z. For any field F'  of  characteristic 

prime to [A'h there is a division algebra D / F  and a valuation v : D --+ F such 

that: 

a) F is Henselian with respect to the restriction of v~ 

b) D is totally and tamely ramified with respect to v and 

c) The symplectic pairing defined by D can be identified with A ~, 7 I. 

Totally and tamely ramified division algebras behave well with respect to 

prime-to-p extensions as the following shows. 
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LEMMA 2.7: Suppose D / F  and v : D -* F are such that 2.6 a) and b) hold. 

I f  L / F  is a field extension of degree prime to [D : F], the division algebra E = 

D®F L has a valuation extending v with respect to which it is totally and tamely 

ramified. Moreover, D and E define isomorphic symplectic pairings. 

Proof'. (Follows from [M, theorem 1 ] but we provide a short, self-contained 

proof) Since F is Henselian, v extends to a unique valuation (also called v) on 

L, and L is Henselian. It follows that v extends to some valuation v : E 

F'. Set A = v ( D ) / v ( F )  and A' = v(E) /v (L) .  The inclusion D C_ E induces a 

homomorphism ¢ : A --~ A' which by (2.4) is easily seen to be compatible with the 

symplectie pairings. We claim ¢ is injeetive. Indeed suppose a E v(D) N v(L).  

Write a = v(g) for g E L. Let NL/F : L -* F be the norm map and let f = 

NL/F(g).  Then v(f)  = [L: F]v(g), implying a + v(F)  has order dividing [L: F] 

in A. But [A[ and [L: F] are relatively prime so a E v(F), as desired. 

Now [v(E):  v(L)] = IA'I > IAI-- [v(D): v(F)] = [ D :  F] = [ E :  L] and 

E is totally and tamely ramified. Consequently [A'] = [A[, so A --~ A' is an 

isomorphism and 2.7 is proved. | 

We are ready to prove 2.1 using Amitsur's incompatibility argument. Suppose, 

on the contrary, that UD(F, pr ,s)  ®z L is a G-crossed product for [L : Z] of 

degree prime to p. Let A' be the elementary abelian p group of order p2r with 

basis a x , . . . ,  at ,  b l , . . . ,  b~. For convenience we identify/~ with a subgroup of Q/Z,  

by fixing the various primitive roots of 1. Let "/ : A' x A' --4 Q/Z  be the 

nondegenerate symplectic pairing defined by 7' ( ai, aj ) = 7' ( bi, bj ) = 7' ( ai, bj ) = 

0 if i ~ j, 7'(ai,al)  = 7'(bi,bi) = O, and 7'(ai,bi) = ~ + 7,. Take D / F  as in 

2.6. By 2.2, D ®F L' is a G-crossed product for some L' _D F of degree prime 

to p. By 2.7 and 2.5, G is isomorphic to a Lagrangian of A' and hence to an 

elementary abelian p-group of order pr. On the other hand, let A ~ be the direct 

sum of two cyclic groups of order p~ with basis a, b. Define the nondegenerate 

symplectic pairing 7' : A' x A' ~ Q/Z by setting 7'(a, b) = (1/p ~) + Z. Arguing 

as above, G must be isomorphic to a Lagrangian of A and so is either cyclic or 

metacyclic. When r >_ 3 this is a contradiction, and 2.1 is proved. 

3. I n d e c o m p o s a b l e  divis ion a lgebras  and  pr ime- to-p  ex tens ions  

In this section we will show that there is a division algebra D / F  of odd degree 

p2 and exponent p, for p odd, such that every prime-to-p extension of D ® f  L is 
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indecomposable. More specifically, we will show that the indecomposable division 

algebra constructed in IT] has this property. The referee has pointed out that 

using [TW] mad [M], one can generalize this example to include an arbitrary 

inertially split division algebra D of exponent p and degree pr (r > 2) over a 

Henselian field, for p odd, and degree r > 3 for p = 2. In this whole section, the 

field F ~ will contain a primitive pth root p of 1. 

The argument in [T] starts by constructing a division algebra A / F '  of degree 

p2 and a field M = F~(al/P,b l /p) such that: 

(1) M splits A 

(2) A cannot be written as (a, f)p,F' ® (b, g)p,f '  

where in general (x, Y)p,f ' ,  of course, is generated over F'  by a,  fl subject to 

the relations c~p = x, tip = y, and c ~  = pfia. We do not have to duplicate 

the construction of A but can simply note that (1) and (2) are preserved by 

prime-to-p extensions, as follows. 

LEMMA 3.1: Suppose  L ~ D F '  is a finite field extension with [L' : F ~] pr ime  top.  

Write A'  = A ®f '  L ~ and M ~ = L ' (a  1/p, bl/p). Then M '  splits A'; but A ~ cannot 

be wri t ten as (a , f ' )p ,L,  ® (b,g')p,L, [or any f ' , g '  E L'. 

Proof: Clearly M'  splits A'. Suppose A' ~ ( a , f ) p , L ,  ® (b,g')p,L, and r = [L' : 

F~]. Taking the corestriction from L ~ to F ~, 

[corL,/F,(A')] = [corL,/F,(a,f ')][corL,/F,(b,g')]. 

By [B, p. 112] this last expression is [(a, gL , / f , ( f ' ) ) ] [ (b ,  gL , / f , (g ' ) ) ] .  Finally, 

note [corL,/v,(A')] = [A] r. If rs is congruent to 1 mod p, then 

A ~- (a, N L , / f , ( f ' ) ' ) p , f '  ® (b, NL, /V , (g ' ) ' )p , r , .  

This contradiction proves the lemma. | 

The next step in the proof of [T] was to set F = F ' ( x ,  y) and D / F  the division 

algebra in the class of (A  ®F' F)  ® f  (x, a)p,f ®F (Y, b)p,f. If K = F(a  I/p, bl/p), 

then K splits D and so D has degree p2. Tignol in [T] showed that D is inde- 

composable. We wish to show: 

THEOREM 3.2:  Suppose  L D_D_ F is a finite t~eld extension and [L : F] is pr ime  to 

p. Then  D ® F L is indecomposable.  

Of course, 3.2 is a consequence of 3.1 and: 
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PROPOSITION 3.3: Suppose L __D F is a/ /hire field extension and [L : F] is prime 

to p. If D ® f  L is decomposable, there is a f/nite prlme-to-p extension L ~ D_. F I 

such that A ®f'  L' ~- (a, f)p,L' ® (b, g)p,L'. 

Proof: Let K = F'((x,  y)) be the iterated power series field, F '  D F.  L ® f  K 

is a direct sum of fields ~BLi. One such L/, say Ll,  must have degree prime to p 

over K.  The discrete valuation on K defined by y extends uniquely to LI and we 

may view L C_ L1. If L" = L1 is the residue field, L" D_ F'((x)) is a finite field 

extension of degree prime to p. The discrete valuation defined by x on F'((x)) 

extends uniquely to L" and L t -- L" has degree prime to p over F t. 

Now suppose D ® F L  is decomposable. Then (D®FK)®KL1  = B1 ®B2 where 

the Bi are central over L1 of degree p. By IT, p. 212], one of the Bi, say B1, can 

be assumed to be unramified with respect to the (extension of the) y- valuation. 

Thus B2 defines the same ramification character over L1 = L" as (y, b). By the 

argument of [T, p. 212] B2 - (yu, b) for u E L~ a unit with respect to the y- 

valuation. The residue fi E L" can be written 7r~w where ~r is a prime element of 

L" with respect to the x-valuation and w is a unit. Let s be the valuation of the 

image of x in L". Now [S,][(yu, b)] = [D ®F L1] = [A ®F' L,][(x, a)][(y, b)], so we 

have [B1][(u, b)] = [A ®F, L1][(x, a)]. Both sides of this equation are unrarnified 

so we can equate their images in Br(L1).  That  is, 

(3) [/}l][(r~w, b)] = [A ®F' L"l[(x, a)] 

It follows that with respect to the x-valuation, B1 has the same character over 

L" = L' as (Tr, aSb-r), or as (x, ab -rt) where st is congruent to 1 modulo p. As 

with B2, it follows that the residue algebra/~1 ~ (xvl,ab-rt)p,L" for some unit 

v' E L". Substituting this into (3) we have 

[A ®F L"] = [(xv', ab-rt)][(~r~ w, b)l[(x, a- l ) ] .  

Writing x = ~r~z for some unit z we have [A ~F  nI I ]  = 

[(~r ~ , ab-rt)][(z, ab-rt)][(v ', ab-rt)][(Tr~w, b)][(TrSz, a -1 )] -- 

[(Tr, a~b-rSt)][(v ', ab-r')][(z, ab-rt)l[(~r, b~)l[(w, b)][(z, a -1 )][(Tr, a-~)] = 

[(v', a)][(¢-%-rtw, b)]. 
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Taking images in Br(L')  and renaming variables we have 
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[A ®f' L'] = [(a, f)l[(b, g)l. 

This proves 3.3. | 

Of course, 3.3 and 3.1 imply the main theorem 3.2 and we are done. 
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