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ABSTRACT
Every division algebra of degree p* has a prime-to-p extension which is a
crossed product, iff t < 2.

Introduction
Throughout this paper we assume D is a division algebra which is finite dimen-
sional over its center F (a field). Then it is well-known [D : F|] = n? for some
integer n called the degree of D; furthermore D is isomorphic to a tensor prod-
uct D) ® --- ® D, over F where each D; has degree p:(i) for a suitable prime
p; and suitable #(¢) € N (so that n = pi(l) .. .p:,(“)). In this way the structure
theory of finite dimensional division algebras often is reduced to the case that
the degree n is some prime power p*, and we shall make this assumption (n = p*)
throughout; in particular p is a fixed prime.

Many basic theorems about division algebras have been proved by passing to
D®p L where [L : F] is finite but not divisible by p; we shall call DQp L a prime-
to-p extension of D. For example, Albert showed that any division algebra D
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of degree p has a prime-to-p extension which is cyclic; taking the corestriction
Rosset proved D is similar (in the Brauer group) to a tensor product of cyclics
each of degree p. Our main theorems using this technique are:

1. Every division algebra D of degree p*, u > 2, has a prime-to-p extension
which contains a tensor product of two cyclic extensions of its center (each of
dimension p). In particular if u = 2 then D has a prime-to-p extension which is
a crossed product with respect to the group Z, x Z,.

2. There are examples of division algebras of degree p*, u > 3, such that no
prime-to-p extension is a crossed product.

3. (for p odd). There is a division algebra of degree p? and exponent p, every
prime to p extension of which is tensor indecomposable (i.e. cannot be written
as a tensor product of central subalgebras). (The referee has pointed out that for
p = 2, the same techniques yield the analogous results in degree 8 and exponent
2.)

Each section of this paper corresponds to the respective theorem stated above.

1. The “canonical” prime-to-p extension, and crossed products

In this section we set up the standard prime-to-p extension of D (which goes
back to Albert), and use it to prove theorem 1.

Suppose D is a division algebra of degree n over its center F, where n is a
power of a prime number p. Let K D F be a subfield of D which is separable
over F. (There exist separable subfields of dimension n, by Koethe’s theorem.)
Let E be the normal closure of K, and let G = Gal(E/K). Alsolet [K : F] = p*.
Then |G| = p“t for suitable v > u and suitable ¢ prime to p. Let H be a Sylow
p-subgroup of G, and let L = EH the fixed subfield of E under H. Then
[L:F]=[E:F}/[E:L]=tis prime to p.

Note L C Eand K C Eso KL C E. Butt = [L: F] divides [KL : F] and
p* = [K : F] divides [KL : F], implying [KL : F] = p*t.

By Galois theory E/L is Galois with Galois group H. Let Hy = Gal(E/KL).

Since H is a p-group we can form a chain of subgroups
HCcHC.CH=H
with each H; normal of index p in H;;1. Thus there is a chain:

KL=E()DE13E2~--DE1,=L
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with each E;/E;y; Galois of degree p.

Looking at E,_; we have:

PROPOSITION 1.1 (Essentially Albert [A, theorem 4.31]): If deg D = n = p* and
K D F is a subfield of D separable over F then there is some extension L D F

with [L : F] prime to p, such that KL contains an element a of degree p over L
with L(a)/L Galois.

THEOREM 1.2: If p?|deg(D) then some prime-to-p extension D @ L contains a
Galois field extension K of L of dimension p*, having Galois group Z, x Z,.

Proof: By Proposition 1.1 there is a prime-to-p extension Ly of F' such that
D; = D ® Lo contains a Galois extension Lo(a) of Lo of degree p; let o be a
nontrivial automorphism of Lg(a)/Lo. By the Skolem-Noether theorem there is

1

y in Dy for which yay~! = o(a). Clearly y? commutes with a, but y does not.

Furthermore Ly, y, and a generate a division algebra A of degree p with center
Lo(yP).

Let D' = Cp,(A) be the centralizer of A in Dy. Then D' N Ly(a) = Lo. (For
otherwise D' N Lo(a) = Lo(a) since [Lo(a) : L] = p is prime, implying a € D’ and

thus commutes with y, contradiction.)

CASE 1: D' contains a proper separable extension K of Ly. Applying propo-
sition 1.1 there is a prime-to-p extension L; of Ly such that L; K contains an
element b with L;(b)/L, Galois of dimension p. Furthermore L; K N Ly{a) = Ly
seen by matching bases over Ly, so Li(b) N L1(a) = Ly; we conclude by taking
L =L, and K = Ly(a,b), which is Galois over L; with Galois group Z, x Z,.

CASE 2: D' does not contain a proper separable field extension K of Ly, i.e.,
every subfield of D’ is purely inseparable over Ly. Note that deg D' = 1, since
otherwise D' has maximal subfields separable over its center, which thus are not
purely inseparable over Lo. Hence A = Cp,(Lo(y?)), implying p[Lo(y?) : Lo} =
deg D, and thus Ly(y) is a maximal subfield of D, purely inseparable over Lg.
By [A, theorem 7.25], Dy is cyclic. Hence by [S, theorem 1'], D; has a Galois field
extension K of L of dimension p?, having Galois group Zyp X Zyp. (In fact by the
theorem quoted, any group of order < deg(D;) appears as the Galois group of a
suitable maximal subfield.) (We would like to thank Al Sethuraman for pointing

out a gap in the original version; he has an alternate proof for this case.) |
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COROLLARY 1.3: If deg(D) = p? then some prime-to-p extension of D is a
crossed product.

2. Degrees higher than p?

In the previous section, we showed that for any division algebra D/F of degree
p? there is a prime-to-p field extension L D F such that D ®p L is a crossed
product. Of course, if D has degree p the proof is quite easy. The purpose of
this section is to show that the above results are best possible. That is, we will

show:

THEOREM 2.1: Suppose s > 2, r > 3, F is a field of characteristic not p, and
D = UD(F,p",s) is the generic division algebra of degree p™ in s variables over
F. Let Z = Z(D), the center of D and L D Z, an arbitrary prime-to-p extension.
Then UD(F,p",s) @z L is not a crossed product.

Although the proof of 2.1 will take a few pages, conceptually what we will do is
very clear. The main idea is that even after prime-to-p extensions the argument
in Amitsur’s noncrossed product proof still works in the case degree p", r > 3.
For example, assume UD(F,p",s) ®z L is a G-crossed product (i.e. G appears
as the Galois group) where L = Z(a) is separable over Z, and let f € Z[z] be
the minimal polynomial of a over Z. One may assume f is monic. Specializing
UD(F,p",s) to a division ring D would specialize f to a polynomial f which may
be reducible, so writing Z(D)[z]/(f) as a direct sum of fields L; @ --- @ L, we
see that D @ L1,...,D @ L; each are G-crossed products. But [Ly @ ---® L¢ :
F} =Y [Li: F] = deg f, so some [L; : F] is prime to p, and now the customary
comparison technique can be made to work.

In order to provide a comprehensive proof including the inseparable case we
turn to the techniques of Azumaya algebras. Let us begin by defining some
terminology.

e: R > Sis a ring homomorphism of commutative rings and M is an
R-module, M @, S is defined as M ®r S where § is viewed as an R module
via ¢. For commutative rings R C T, recall (e.g. [DI, p.80]) the definition of a
G-Galois extension T'/R. Given such a T/R, let ¢: G x G — T* be a 2 cocycle.
We can form the G-crossed product A(T/R,G,c) = Y Tu, where ust = o(t)u,
fort € T and u,u, = ¢(0, T)uer. An algebra A/R is called a G-crossed product
if A= A(T/R, G,c) for some T/R and c. Note that if R is a field, T need not be
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a field but is a direct sum L@ -+ @ L where L/R is H-Galois for some H C G.
The advantage of this definition is that the class of G-crossed products is closed
under base extension. For any commutative domain R, we denote its field of
fractions by Q(R). Finally, if A is a set, |A| denotes the order of A.

Our approach, not surprisingly, is to modify Amitsur’s comparison technique.
First we give the consequences of assuming UD(F, p", s)®z L is a crossed product.

THEOREM 2.2: Let D = UD(F,p",s) where s > 2, and Z = Z(D). Assume
D has a prime-to-p extension D @z L which is a G-crossed product. If A/K is
any central simple algebra of degree n, where K D F, then A has a prime-to-p
extension A ®x K' which is a G-crossed product.

Proof: Let L" be the maxima) separable subfield of L over Z. View D naturally
as the ring of fractions of the ring of generic matrices F{Y7,...,Y,} at its center
C = Z(F{",...,Y,}). Before continuing the proof we need

LEMMA 2.3: Thereis 0 # t € C and, for C' = C(1/t), there is an Azumaya
algebra B/C', a commutative C'-algebra S", and a commutative S"-algebra S
such that:

(1) 5" is a finitely generated free C'-module and separable over C'.

(2) S is a finitely generated free S"-module, and S C S" for some power q
of char(F). Of course, S = S§" if char(F) = 0.

(3) Q(s")=L".

(4) Q(S)=L.

(5) B®c¢' Z =D.

(6) B ®c S is a G-crossed product.

Proof: Note that properties (1) through (6) are preserved by extension of C' in
Z. Also note that it suffices to find C' C Z finitely generated as an algebra over
C, satisfying all the above, since then C' C C(1/t) for some 0 # t € C. Thus,
at any stage in the argument we are free to add finitely many elements to C' as
needed.

To find B/C' Azumaya with B ®c» Z = D is standard (e.g. [0S, p.135]).
Suppose L" = Z(a) and f(z) € Z[z] is the minimal monic polynomial of a over
Z. By adding finitely many elements to C', we may assume f(z) € C'[«]. Set
S" = C'[z]/{f(z)). f e € L" ®z L" is the separating idempotent (e.g. [DI,
p-40}), adding finitely many more elements to C' will insure e € S” ®¢ S”,
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and so $"/C' is separable. Next, suppose Lo = L" C L; C--- C L, =L is
such that L;/L;—1 has degree ¢; and L; = L;_y(a;) where (a;)% = a; € Li—;.
Adding finitely many elements to C' will insure a; € S” and inductively we set
Si = Si—1[z]/(z% — a;) (where So = §"). Proceeding by induction we can set
S =S,

We have assumed D ®z L = A(M/L,G,c) where M/L is G-Galois. In the
same spirit as the above paragraph, we can add finitely many elements to C’
so that there is a G-Galois T'//S with T'Qg L & M as G-Galois extensions and
such that all values of ¢ : G x G — M are units in T' (we can quote [S1, p.528]
here). Forming the crossed product A(T/S, G, c), we obtain an isomorphism ¢ :
(B®c S)®s L =2 A(T/S,G,c)®s L. Adjoining the final finite batch of elements
to C' will insure that ¢ restricts to an isomorphism B Q¢ S = A(T/S,G,¢).

This proves the lemma. 1

We can now complete the proof of 2.2. Suppose A/K is as given, and C' =
C(1/t), ", S, B are as in the lemma. Thereisa ¢ : C — K such that ¢(t) # 0,
and extending ¢ to C', we have B ®, K = A. Let K" = §" ®, K. Then K"
is a separable K-algebra so K" = K{ @ - @ K;' where each K is a separable
field extension of K. Let V = S®,, K. Then V is a commutative K"-algebra and
Ve C K". If J is the Jacobson radical of V, then V/J & K| @ --- & K| where
each K! is a purely inseparable field extension of K'.

Since B ®c+ S is a G-crossed product, the same holds for A @k V. It follows
that A®x V/J is a G-crossed product and so all A® x K| are G-crossed products.
But [L : Z] is prime to p, so the same is true of [L" : Z] and thus of [K' : K].
It follows that some K!' has degree prime to p over K. If L = L" then K] = K
and we are done. If not, char(F) # p implying that [K} : K}'] is prime to p and
so [K!: K] is prime to p, proving 2.2. 1

With 2.2 as our tool, we proceed to prove 2.1 by showing no group G can arise
for all A/K as in 2.2. To this end, we require examples of division algebras in
which we understand the groups appearing as Galois groups of maximal subfields
and their behavior under prime to p extensions. It is very convenient to use totally
and tamely ramified division algebras for our purpose. We will recall some basic
definitions in this area, but we refer the reader to [TW], and [TA] for more details.

Let D be a division algebra with (Krull) valuation v: D — T’ where T is an

ordered abelian group. Associated to v is its valuation ring R € D with unique
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maximal ideal M C R and residue division algebra D = R/M. If F' = Z(D) then
v induces a valuation (also called v) on F and we let ¢(D/F) denote the finite
index [v(D*) : v(F*)]. We say D is totally and tamely ramified with respect
tovif e(D/F) = [D: F] and [D : F] is prime to the residue characteristic. Note
that in this case D = F.

Assume that D is a totally and tamely ramified division algebra with center
F, with respect to a valuation v. We will quote some known results about D. Let
A = v(D*)/v(F*), an abelian group of order [D : F). D defines a nondegenerate
symplectic pairing v: A x A — u [TW, p. 232] where u C F is the group of
roots of 1, by which we mean:

(1) 7 is bilinear
(2) v(a,a)=1foralla€ A
(3) 7 induces an isomorphism 4 = Homz(4, ).

Recall that if a,b € v(D) and d, e € D satisfy v(d) = a, v(e) = b, then:
(2.4) v(a,b) = (ded 'e” )+ M e D=F.

A subgroup B C A is called Lagrangian if 4(B, B) = 1 and |B|? = |A|. The key

result in this whole business is:

THEOREM 2.5 (TW, theorem 3.8): A group G is isomorphic to the Galois group
of a maximal subfield of D over a henselian field F' if and only if G is isomorphic
to a Lagrangian subgroup of A.

Paired with 2.5 is the existence theorem.

THEOREM 2.6 (TA, p. 133): Suppose A’ is a finite abelian group with a nonde-
generate symplectic pairing v' : A' x A" — Q/Z. For any field F' of characteristic
prime to |A'|, there is a division algebra D/F and a valuation v : D — T' such
that:

a) F is Henselian with respect to the restriction of v,
b) D is totally and tamely ramified with respect to v and
c¢) The symplectic pairing defined by D can be identified with A', 4'.

Totally and tamely ramified division algebras behave well with respect to

prime-to-p extensions as the following shows.
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LEMMA 2.7: Suppose D/F and v : D — T are such that 2.6 a) and b) hold.
If L/F is a field extension of degree prime to [D : F), the division algebra E =
D@®pr L has a valuation extending v with respect to which it is totally and tamely
ramified. Moreover, D and E define isomorphic symplectic pairings.

Proof: (Follows from [M, theorem 1 } but we provide a short, self-contained
proof) Since F is Henselian, v extends to a unique valuation (also called v) on
L, and L is Henselian. It follows that v extends to some valuation v : £ —
I". Set A = v(D)/v(F) and A’ = v(E)/v(L). The inclusion D C E induces a
homomorphism 1 : A — A’ which by (2.4) is easily seen to be compatible with the
symplectic pairings. We claim ¢ is injective. Indeed suppose a € v(D) N v(L).
Write a = v(g) for ¢ € L. Let Nyjp : L — F be the norm map and let f =
Ny/r(g). Then v(f) = [L : Flv(g), implying a + v(F) has order dividing [L : F]
in A. But |A| and [L : F)] are relatively prime so a € v(F), as desired.

Now [v(E) : v(L)] = |A'| > |A] = [v(D) : v(F)] = [D : F] = [E : L] and
E is totally and tamely ramified. Consequently |A'| = |A], so A — A’ is an

isomorphism and 2.7 is proved. ]

We are ready to prove 2.1 using Amitsur’s incompatibility argument. Suppose,
on the contrary, that UD(F,p",s) ®z L is a G-crossed product for [L : Z] of
degree prime to p. Let A' be the elementary abelian p group of order p?” with
basis ay,...,ar, b1,...,b,. For convenience we identify p with a subgroup of Q/Z,
by fixing the various primitive roots of 1. Let 4’ : A’ x A’ — Q/Z be the
nondegenerate symplectic pairing defined by v'(a;,a;) = v'(b;, b;) = 7'(ai, bj) =
0if 2 # 7, v'(ai,ai) = ¥'(bi,bi) = 0, and ~'(ai, b)) = % + Z. Take D/F as in
2.6. By 2.2, D ®r L' is a G-crossed product for some L' O F of degree prime
to p. By 2.7 and 2.5, G is isomorphic to a Lagrangian of A’ and hence to an
elementary abelian p-group of order p". On the other hand, let A’ be the direct
sum of two cyclic groups of order p” with basis a,b. Define the nondegenerate
symplectic pairing ¥’ : A’ x A' - Q/Z by setting v'(a,b) = (1/p") + Z. Arguing
as above, G must be isomorphic to a Lagrangian of A and so is either cyclic or

metacyclic. When r > 3 this is a contradiction, and 2.1 is proved.

3. Indecomposable division algebras and prime-to-p extensions

In this section we will show that there is a division algebra D/F of odd degree

p? and exponent p, for p odd, such that every prime-to-p extension of D @ L is
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indecomposable. More specifically, we will show that the indecomposable division
algebra constructed in [T} has this property. The referee has pointed out that
using [TW] and [M], one can generalize this example to include an arbitrary
inertially split division algebra D of exponent p and degree p” (r > 2) over a
Henselian field, for p odd, and degree r > 3 for p = 2. In this whole section, the
field F’ will contain a primitive p** root p of 1.
The argument in [T] starts by constructing a division algebra A/F' of degree

p? and a field M = F'(a'/P,b'/P) such that:

(1) M splits A

(2) A cannot be written as (a, f)p, F ® (b,9)p,Fr
where in general (z,y), rr, of course, is generated over F' by a, 3 subject to
the relations o = z, g = y, and af = pBa. We do not have to duplicate
the construction of A but can simply note that (1) and (2) are preserved by

prime-to-p extensions, as follows.
LEMMA 3.1: Suppose L' D F' is a finite field extension with [L' : F'] prime to p.
Write A' = A®p L' and M' = L'(a'/? ,b'/?). Then M’ splits A'; but A' cannot
be written as (a, f')p,1» ® (b,g')p,1+ for any f',¢' € L'.
Proof: Clearly M’ splits A’. Suppose A' 2 (a, f'), 1’ ® (b,¢')p,.» and r = [L' :
F']. Taking the corestriction from L' to F',

[COI‘LI/FI(A,)] = [COI‘LI/FI (a, f’)][COI‘LI/FI(b, g,)].
By [B, p. 112] this last expression is {(a, Ny /g (f')I(b, N/ /p:(¢'))]. Finally,
note [cory p(A')] = [A]". If rs is congruent to 1 mod p, then

A= (a,Npyp(f') ), @ (b,Npiypr(g'))p, .
This contradiction proves the lemma. |

The next step in the proof of [T] was to set F = F'(z,y) and D/F the division
algebra in the class of (A @ F) ®r (z,a)p,F ®F (y,b)p,r. If K = F(al/?,b1/?),
then K splits D and so D has degree p*. Tignol in [T] showed that D is inde-
composable. We wish to show:

THEOREM 3.2: Suppose L D F is a finite field extension and [L : F] is prime to
p. Then D ®r L is indecomposable.

Of course, 3.2 is a consequence of 3.1 and:
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ProOPOSITION 3.3: Suppose L D F is a finite field extension and [L : F] is prime
top. If D @p L is decomposable, there is a finite prime-to-p extension L' O F'
such that A@p L' & (a, f)p,[,t ® (b,g)p,Lr.

Proof: Let K = F'((z,y)) be the iterated power series field, F' D F. L®r K
is a direct sum of fields @L;. One such L;, say Ly, must have degree prime to p
over K. The discrete valuation on K defined by y extends uniquely to L; and we
may view L C L;. If L" = L, is the residue field, L" D F'((z)) is a finite field
extension of degree prime to p. The discrete valuation defined by z on F'((z))
extends uniquely to L" and L' = L" has degree prime to p over F'.

Now suppose D®r L is decomposable. Then (D®r K)®x L = B; @ B; where
the B; are central over Ly of degree p. By [T, p. 212], one of the B;, say By, can
be assumed to be unramified with respect to the (extension of the) y- valuation.
Thus B; defines the same ramification character over L; = L" as (y,b). By the
argument of [T, p. 212] By = (yu,b) for u € L; a unit with respect to the y-
valuation. The residue & € L” can be written #"w where 7 is a prime element of
L" with respect to the z-valuation and w is a unit. Let s be the valuation of the
image of z in L". Now [B1][(yx, b)] = [D®F L1] = [AQF Li][(z, a)][(y, b)], so we
have [B1}[(u,b)] = [A ® ' Li1][(z,a)]. Both sides of this equation are unramified

so we can equate their images in Br(L;). That is,
(3 [Br]l(7"w, b)} = [A@F L"][(z,a)]

It follows that with respect to the z-valuation, B; has the same character over
L" = L' as (m,a*b™"), or as (z,ab™"*) where st is congruent to 1 modulo p. As
with By, it follows that the residue algebra By = (zv’,ab™"*), 1~ for some unit
v’ € L". Substituting this into (3) we have

[A®F L"] = [(zv', ab™™)][("w, B)][(z,a™")]-
Writing r = 7°z for some unit z we have [A ®p L"] =
[(n*,ab™™)][(2,ab~"))[(v", ab~"N[(n"w, b)}[(7°*2,0a7")] =

[(m,a* =™ N{(v", ab™")][(z, ab™")][(7, b7)]{(w, B)][(2, a™ )] [(m, 0™ )] =
(", )][(v' ™27 w, b)].
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Taking images in Br{L') and renaming variables we have

[A ®F L'] = [(av f)][(b’g)]

This proves 3.3. ]

Of course, 3.3 and 3.1 imply the main theorem 3.2 and we are done.
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